Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 28(4): 653-670.e11, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33561425

RESUMO

Bone marrow stromal cells (BMSCs) play pivotal roles in tissue maintenance and regeneration. Their origins, however, remain incompletely understood. Here we identify rare LNGFR+ cells in human fetal and regenerative bone marrow that co-express endothelial and stromal markers. This endothelial subpopulation displays transcriptional reprogramming consistent with endothelial-to-mesenchymal transition (EndoMT) and can generate multipotent stromal cells that reconstitute the bone marrow (BM) niche upon transplantation. Single-cell transcriptomics and lineage tracing in mice confirm robust and sustained contributions of EndoMT to bone precursor and hematopoietic niche pools. Interleukin-33 (IL-33) is overexpressed in subsets of EndoMT cells and drives this conversion process through ST2 receptor signaling. These data reveal generation of tissue-forming BMSCs from mouse and human endothelial cells and may be instructive for approaches to human tissue regeneration.


Assuntos
Medula Óssea , Transplante de Células-Tronco Hematopoéticas , Animais , Células da Medula Óssea , Células Endoteliais , Endotélio , Células-Tronco Hematopoéticas , Camundongos , Células Estromais
2.
Tissue Eng Part C Methods ; 24(6): 313-321, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29631483

RESUMO

Mesenchymal stem cells/marrow stromal cells (MSCs) are attractive for applications ranging from research and development to use in clinical therapeutics. However, the most commonly studied MSCs, adult bone marrow MSCs (A-MSCs), are limited by significant donor variation resulting in inconsistent expansion rates and multilineage differentiation capabilities. We have recently obtained permission to isolate pediatric MSCs (P-MSCs) from surplus iliac crest bone chips. Here, we developed a simple and easily replicable isolation protocol yielding P-MSCs, which adhere to MSC defining guidelines. After confirming immunophenotypic marker expression, we compared expansion rates, senescence, morphology, and trilineage differentiation of P-MSCs to A-MSCs for multiple donors. We found P-MSCs have faster in vitro replication, consistently show significantly lower senescence, and are capable of more reproducible multilineage differentiation than A-MSCs. We, therefore, believe P-MSCs are a promising candidate for use in research applications and potentially as part of an allogeneic therapeutic treatment.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais/citologia , Adulto , Técnicas de Cultura de Células , Células Cultivadas , Criança , Humanos , Masculino
3.
J Orthop Surg Res ; 9: 135, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25496535

RESUMO

BACKGROUND: We have investigated the behaviour of a newly characterised population of haemarthrosis fluid-derived human mesenchymal stem cells (HF-hMSCs) with titanium (Ti) surfaces. METHODS: HF-hMSCs were seeded onto round cannulated interference (RCI; Smith and Nephew) screws or control Ti discs and cultured under pro-osteogenic conditions. RESULTS: Electron microscopy showed the attachment and spreading of HF-hMSCs across both Ti surfaces during the early stages of osteogenic culture; however, cells were exclusively localised to the basal regions within the vertex of the Ti screws. In the later stages of culture, an osteoid matrix was deposited on the Ti surfaces with progressive culture expansion and matrix deposition up the sides and the top of the Ti Screws. Quantification of cellular content revealed a significantly higher number of cells within the Ti screw cultures; however, there was no difference in the cellular health. Conversely, alizarin red staining used as both a qualitative and quantitative measure of matrix calcification was significantly increased in Ti disc cultures compared to those of Ti screws. CONCLUSIONS: Our results suggest that the gross topography of the metal implant is able to create microenvironment niches that have an influence on cellular behaviour. These results have implications for the design of advanced tissue engineering strategies that seek to use cellular material to enhance biological remodelling and healing following tissue reconstruction.


Assuntos
Interface Osso-Implante/fisiologia , Células-Tronco Mesenquimais/fisiologia , Titânio/metabolismo , Adulto , Parafusos Ósseos , Células Cultivadas , Feminino , Humanos , Masculino , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Osteogênese/fisiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-25229057

RESUMO

BACKGROUND: Treatment of large bone defects due to trauma, tumor resection, or congenital abnormalities is challenging. Bone tissue engineering using mesenchymal stem cells (MSCs) represents a promising treatment option. However, the quantity and quality of engineered bone tissue are not sufficient to fill large bone defects. The aim of this study was to determine if the addition of enamel matrix derivative (EMD) improves in vitro chondrogenic priming of MSCs to ultimately improve in vivo MSC mediated endochondral bone formation. METHODS: MSCs were chondrogenically differentiated in 2.0 × 10(5) cell pellets in medium supplemented with TGFß3 in the absence or presence of 1, 10, or 100 µg/mL EMD. Samples were analyzed for gene expression of RUNX2, Col II, Col X, and Sox9. Protein and glycoaminoglycan (GAG) production were also investigated via DMB assays, histology, and immunohistochemistry. Osteogenic and adipogenic differentiation capacity were also assessed. RESULTS: The addition of EMD did not negatively affect chondrogenic differentiation of adult human MSCs. EMD did not appear to alter GAG production or expression of chondrogenic genes. Osteogenic and adipogenic differentiation were also unaffected though a trend toward decreased adipogenic gene expression was observed. CONCLUSION: EMD does not affect chondrogenic differentiation of adult human MSCs. As such the use of EMD in combination with chondrogenically primed MSCs for periodontal bone tissue repair is unlikely to have negative effects on MSC differentiation.

5.
J Biomed Mater Res A ; 102(11): 3872-82, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24339408

RESUMO

Tissue engineering strategies can be applied to enhancing osseous integration of soft tissue grafts during ligament reconstruction. Ligament rupture results in a hemarthrosis, an acute intra-articular bleed rich in osteogenic human mesenchymal stem cells (hMSCs). With the aim of identifying an appropriate biomaterial with which to combine hemarthrosis fluid-derived hMSCs (HF-hMSCs) for therapeutic application, this work has investigated the biocompatibility of microparticles manufactured from two forms of poly(D,L-lactic-co-glycolic acid) (PLGA), one synthesized with equal monomeric ratios of lactic acid to glycolic acid (PLGA 50:50) and the other with a higher proportion of lactic acid (PLGA 85:15) which confers a longer biodegradation time. The surfaces of both types of microparticles were functionalized by plasma polymerization with allylamine to increase hydrophilicity and promote cell attachment. HF-hMSCs attached to and spread along the surface of both forms of PLGA microparticle. The osteogenic response of HF-hMSCs was enhanced when cultured with PLGA compared with control cultures differentiated on tissue culture plastic and this was independent of the type of polymer used. We have demonstrated that surface engineered PLGA microparticles are an appropriate biomaterial for combining with HF-hMSCs and the selection of PLGA is relevant only when considering the biodegradation time for each biomedical application.


Assuntos
Diferenciação Celular , Ácido Láctico/química , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Ácido Poliglicólico/química , Linhagem Celular , Humanos , Células-Tronco Mesenquimais/citologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Propriedades de Superfície
6.
Stem Cell Rev Rep ; 9(5): 599-608, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23760649

RESUMO

Satisfactory osseous tissue integration of the soft tissue graft with bone is the mainstay of healing following surgical reconstruction of the anterior cruciate ligament (ACL). However, tissue remodelling is slow and significantly impacts on quality of life by delaying return to work and sport and accelerating the onset of degenerative diseases such as osteoarthritis. Delivery of multipotent human mesenchymal stem cells (hMSCs) at surgery could enhance osseous tissue integration. We aim to use hMSCs derived from haemarthrosis fluid (HF) (the intra-articular bleed accrued post-trauma) which is aspirated and discarded as clinical waste. With the aim of improving our bioprocessing methodologies for clinical translation we have investigated the effect of low oxygen tension on the derivation and osteogenic potential of this novel HF-hMSC population. Mononuclear cells were isolated from HF aspirated samples and divided for derivation and culture under normal or low oxygen tension. HF-hMSCs were derived from 100 % of cultures under low oxygen tension compared to 71 % for normal oxygen tension; this was coupled with increased CFU-Fs. We investigated the osteogenic potential and cellular health of HF-hMSC populations following ex vivo expansion. HF-hMSC populations showed enhanced matrix mineralisation and cellular health when differentiated under low oxygen tension. This positive effect of low oxygen on osteogenesis and cellular health was reduced with prolonged culture. These data demonstrate that derivation and culture of HF-hMSC populations under low oxygen tension will enable the translation of a cellular therapy for the treatment of broad patient numbers with optimal osteogenic potency and cellular vitality.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Oxigênio/farmacologia , Antígenos CD/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , DNA/biossíntese , Relação Dose-Resposta a Droga , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Citometria de Fluxo , Hemartrose/sangue , Hemartrose/patologia , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Oxigênio/metabolismo , Células-Tronco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...